<rt id="m4md3"></rt>
  • <bdo id="m4md3"><meter id="m4md3"></meter></bdo>
  • <label id="m4md3"></label>
      <center id="m4md3"><optgroup id="m4md3"></optgroup></center>
      產品分類

      當前位置: 首頁 > 新聞熱點

      新型測試技術使射頻識別標簽的測試流水線化

      發布日期:2022-07-14 點擊率:37

      當前的射頻識別(RFID)標簽測試方法對大量的倉庫和貨架上的標簽是一個負擔,因為當前的測試方法需要對每一個標簽獨立調諧,因此測試流水線化可以獲得更快的原型設計時間,喬治亞工學院的工程師們最近設計了一種新的測試機,可以在新標簽芯片仿真的時候同時測試數百個RFID標簽。


      喬治亞電氣和計算機學校的Gregory Durgin教授宣稱“我們設計了一種超靈活的系統,能夠允許改變調制方法,載波頻率,射頻標簽配置,天線類型?D?D任何可以使工程師獲得更大范圍和靈活性的系統性能參數,一些公司已與我們合作運用這一測試機來測試新的天線標簽,并利用這些新的傳感器性能來刷新現有的RFID標簽。”


      RFID標簽運用十分廣泛,從存貨管理到收費系統到護照識別再到行李跟蹤。而大部分的標簽都只是被動式的,包含一個芯片,一個能夠接收無信電信號的天線給附近的讀卡機提供身份識別。


      RFID標簽測試的最大的問題是測試量?D?D倉庫和商店貨架往往包含讀卡機范圍內的上百種標簽,很多標簽隱藏在其他標簽的后面,當這些標簽都在讀卡機范圍內的時候,通常的協議是先響應最強信號的標簽,識別后讓它休眠再處理下一個最強信號,這一系列過程很耗時。


      然而,喬治亞測試機運用了一種防干擾系統能夠同時傳輸若干獨立信號,這個系統允許256個標簽同時被訪問,而不是要求讀卡機依次訪問各個標簽,喬治亞測試機可以與400平方英尺內的RFID標簽通信,同時收集標簽信息,該系統還能實時追蹤它們的信號強度。


      Durgin 說“我們有一個自動機械配置系統可以自動調整標簽的距離,這樣我們可以研究空間變化和鏈接衰減的特征?!?/p>


      用新天線設計測試RFID標簽也有一個新問題,需要新的RFID標簽的物理原型用來測試天線,往往也需要昂貴的ASIC設計。為解決這一問題,喬治亞的團隊發明了一種替代品來替代新標簽設計里的ASIC,從而使這種新的天線能夠很快被測試。


      Durgin 說“我們用傳統的發收器硬件來產生和接收任意波形,這樣我們能迅速的測試獨立的天線配置和若干天線,而不需要為每一個實驗創立新的標簽。同時,我們用定制的微波電路來模擬ASIC,用它可以模擬任意載頻和任意調制方法的真實的RFID標簽,甚至是全新的設計”


      目前測試機僅限于915MHz的測試,這也是被動式RFID應用的最常用的頻率,但目前已被更新至2.4- 5.7-GHz。這些更高的頻率將使標簽可以用更小的天線實現更廣泛的操作范圍。


      喬治亞RFID測試機由國家科學基金會贊助。喬治亞工學院工程學研究生Anil Rohatgi 和 Joshua Griffin主導這項研究。


      翻頁查看英文原文:




      Test bed streamlines RFID development


      RFID tags flooding warehouses and product shelves tax current testing methods, which separately tune into each tag. To streamline testing while enabling rapid prototyping of new designs, Georgia Institute of Technology engineers have crafted a new test bed they say is capable of simultaneously testing hundreds of RFID tags while emulating the chip in a new tag design.


      "We have designed a super-flexible system that allows us to vary modulation scheme, carrier frequency, RF tag configuration, antenna types -- anything an engineer can dream up for making these systems perform with greater range and reliability," claimed professor Gregory Durgin at Georgia Tech's School of Electrical and Computer Engineering. "Companies have already -partnered with us to use the testbed to test new tag antennas, and to retrofit existing RFID tags with new sensor capabilities."


      RFID tags are used for everything from inventory management to toll collection to passport identification to tracking luggage. Most tags are passive, including a chip and an antenna that absorbs a radio signal to backscatter its identity to a nearby reader.


      The biggest problem with testing RFID tags is the sheer volume--warehouses and store shelves often contain hundreds of tags within range of a reader, many hidden behind other tags. When multiple tags are within range of a reader, the usual protocol is to interrogate the tag with the strongest signal, then put it to sleep and proceed on to the next strongest signal. That serial process can be time consuming.


      Instead, the Georgia Tech test bed uses an anti-collision system capable of transmitting multiple, unique signals. The system allows up to 256 tags to be interrogated simultaneously. Instead of requiring readers to be within about a foot of tags, the Georgia Tech test bed can communicate with RFID tags within 400 square feet of the tester. Along with collecting tag information, the system can also track their signal strength in real time.


      "We also have a robotic positioning system that drags tags through space so that we can study spatial variability and characterize link fading," said Durgin.


      Testing RFID tags with new antenna designs is also a problem. A physical prototype of the new RFID tag must be built to test the antenna, often involving the costly ASIC fabrication. To solve the problem, the Georgia Tech team created an emulator that substitutes for the ASIC in a new tag design, thus allowing new antennas to be quickly prototyped and tested.


      "We use custom transmitter and receiver hardware to generate and receive an arbitrary waveform of our own design so we can rapidly test unique antenna configurations and multiple antennas without actually constructing new tags for each experiment," said Durgin. "Instead, we use our custom microwave circuits to emulate the presence of an ASIC--it just clips onto the antenna. With it, we can emulate realistic RFID tags at any carrier frequency with any modulation scheme--even new ones of our own design."


      The current test bed is limited to measurements at 915 MHz, the most common frequency for backscatter RFID applications, but it is currently being upgraded to test antennas at frequencies of 2.4- and 5.7-GHz. These higher frequencies will enable tags to operate over wider ranges while using smaller antennas.


      The Georgia Tech RFID test bed was funded by the National Science Foundation. Georgia Tech engineering graduate students Anil Rohatgi and Joshua Griffin conducted the research.




      下一篇: 第一季度消費電子市場

      上一篇: 貼近!——記中控慰問

      主站蜘蛛池模板: 一本大道久久a久久精品综合| 亚洲国产日韩综合久久精品| 亚洲五月激情综合图片区| 国产成人综合色视频精品| 国产精品亚洲综合网站| 精品国产综合区久久久久久| 人人婷婷色综合五月第四人色阁 | 伊人久久中文大香线蕉综合| 狠狠色丁香婷婷久久综合不卡| 国产美女亚洲精品久久久综合| 伊人久久综合精品无码AV专区| 奇米综合四色77777久久| 色综合天天综合高清网| 亚洲综合伊人久久综合| 丁香婷婷亚洲六月综合色| 亚洲国产成人久久综合野外| 中文字幕亚洲综合久久综合| 情人伊人久久综合亚洲| 亚洲色图综合在线| 无码综合天天久久综合网| 色综合久久最新中文字幕| 久久综合九色综合97免费下载| 亚洲色欲啪啪久久WWW综合网| 狠狠色综合色综合网络| 国产成人综合亚洲AV第一页 | 亚洲AV综合永久无码精品天堂| 狠狠色狠狠色综合久久| 精品无码综合一区| 亚洲综合区小说区激情区| 成人综合国产乱在线 | 久久综合亚洲色HEZYO社区| 伊人久久亚洲综合| 91精品国产91久久综合| 91久久婷婷国产综合精品青草| 色欲色香天天天综合网WWW| 大香网伊人久久综合观看| 99久久综合国产精品免费| 色狠台湾色综合网站| 韩国亚洲伊人久久综合影院| 色综合久久中文字幕| 久久影视综合亚洲|