<rt id="m4md3"></rt>
  • <bdo id="m4md3"><meter id="m4md3"></meter></bdo>
  • <label id="m4md3"></label>
      <center id="m4md3"><optgroup id="m4md3"></optgroup></center>
      產(chǎn)品分類

      當(dāng)前位置: 首頁 > 新聞熱點

      一種設(shè)計開關(guān)電源轉(zhuǎn)換器中電容陣列的數(shù)學(xué)方法

      發(fā)布日期:2022-07-14 點擊率:79

      ot;display: block;">在便攜音樂播放器和筆記本/桌面計算機等消費電子設(shè)備中,通常會包含ASIC、處理器、存儲器和LED背光等器件。作為系統(tǒng)負載,這些器件需在合適的電壓下才能正常工作,所以人們通常使用能改變電壓的轉(zhuǎn)換器為這些器件供電。電壓轉(zhuǎn)換器通常使用開關(guān)拓撲,電容器則在負載電流發(fā)生躍變時或在負載時變的情況下被用于解耦負載。

      由于還沒有一種計算方法能計算出充分且必要的電容量,所以,系統(tǒng)設(shè)計者在設(shè)計用于降壓轉(zhuǎn)換器輸出端的電容陣列時,常常面臨很多困難:或許會選擇了較小的電容量,轉(zhuǎn)換器的電壓可能達不到要求進而導(dǎo)致負載工作不穩(wěn)定;或許選擇的電容量偏大,在元件成本和PCB面積方面造成浪費,進而額外增加消費電子設(shè)備的單位成本。

      降壓轉(zhuǎn)換器自身帶有電壓反饋系統(tǒng)。電壓反饋系統(tǒng)檢測負載上的電壓,然后,把檢測到的電壓與參考電壓進行比較,將偏差放大并通過調(diào)整占空度來修正負載上的電壓(圖1)。

      關(guān)于反饋環(huán)如何優(yōu)化的問題屬于另一個話題,本文暫不作探討。借助電源芯片公司提供的高級仿真工具和計算工具,我們能很容易的實現(xiàn)降壓轉(zhuǎn)換器反饋系統(tǒng)的優(yōu)化。

      許多系統(tǒng)設(shè)計者沒有弄清楚波特圖、頻域分析、暫態(tài)電壓波形、以及時域分析之間的差別。實際上,它們是在兩個域進行的分析:一個在頻域,一個在時域。頻域分析和時域分析在數(shù)學(xué)上可以通過拉氏變換函數(shù)進行轉(zhuǎn)換。

      波特圖或頻域分析可以方便地以圖形方式顯示出給定系統(tǒng)的過零頻率(ZCF)和相位裕度,但很少能顯示轉(zhuǎn)換器在給定的階躍載荷電流下的運行情況。這些信息也許對滿足某些內(nèi)部設(shè)計規(guī)則很有用。


      圖1:降壓轉(zhuǎn)換器自身帶有電壓反饋系統(tǒng)。
      圖1:降壓轉(zhuǎn)換器自身帶有電壓反饋系統(tǒng)。

      為什么分析階躍響應(yīng)如此重要呢?

      處理器對電壓變化范圍的要求較為嚴格,電壓范圍由上限和下限給定,或由標稱電壓和容差(如正負50mV)給定。而硬盤或PCI總線電壓軌對電壓的要求較為寬松,能在幾百毫伏的容差范圍內(nèi)可靠地工作。如果給反饋系統(tǒng)施加階躍電流,則在反饋系統(tǒng)的輸出端會出現(xiàn)一個相應(yīng)的響應(yīng)(階躍響應(yīng)),本文中則是以輸出電壓為例。因而,如果把階躍電流或模擬負載電流施加到轉(zhuǎn)換器的輸出端,轉(zhuǎn)換器的輸出端將經(jīng)歷一個電壓變化過程。如果電壓變化過程的最小值和最大值保持在容限范圍之內(nèi),負載將正常工作。

      可以用電阻和開關(guān)FET產(chǎn)生階躍電流函數(shù)。我們需計算出電阻值和FET門的壓擺率(slew rate),并使之與真實負載的幅度和邊緣速率相匹配。在使用電子負載時我們須非常小心,因為長線纜或寄生電感可能使階躍電流變形,進而導(dǎo)致在輸出端看不到階躍響應(yīng)。當(dāng)負載邊緣速率高時尤其應(yīng)對這個問題給予關(guān)注。

      在平衡態(tài),除了開關(guān)紋波電流成分之外,開關(guān)轉(zhuǎn)換器的電感電流和負載電流是匹配的。如果電感電流偏離負載所需要的電流,能量供求差異會導(dǎo)致輸出電容的電壓發(fā)生變化,此時輸出電容就會以充電/放電的形式吸收或補充能量,進而保持輸出電流穩(wěn)定。

      圖2a和圖2b顯示了兩個負載躍變的暫態(tài)過程,分別對應(yīng)于經(jīng)過優(yōu)化和未經(jīng)優(yōu)化的反饋環(huán),前者能量供求差異被降到最小,而后者能量供求差異較大。陰影區(qū)域顯示在電感和負載之間的能量供求差異。


      圖2a, 圖2b:兩個負載躍變的暫態(tài)過程。
      圖2a, 圖2b:兩個負載躍變的暫態(tài)過程。
      圖2a, 圖2b:兩個負載躍變的暫態(tài)過程。

      在本文中,我們假設(shè)反饋環(huán)經(jīng)過了優(yōu)化設(shè)計,能量供求關(guān)系如圖3a所示。圖3b顯示在加載過程中由輸出電容補充的電流量,圖3c顯示了在卸載過程中輸出電容吸收的電流量。


      圖3a, 圖3b, 圖3c:反饋環(huán)經(jīng)過了優(yōu)化設(shè)計后的能量供求關(guān)系。
      圖3a, 圖3b, 圖3c:反饋環(huán)經(jīng)過了優(yōu)化設(shè)計后的能量供求關(guān)系。

      對電感兩端的電壓積分并除以電感值可計算出流過電感的電流。在加載過程中,轉(zhuǎn)換器的占空比變成1。因而,如果把加載過程的起始時間設(shè)為t=0,則通過輸出電容所補充的電流(如圖3b)為:

      在卸載過程中,轉(zhuǎn)換器的占空比變成0。因而,如果把卸載暫態(tài)過程的開始時間設(shè)為t=0,則輸出電容吸收的電流(如圖3c)為:

      其中,V(SUB/)in(/SUB)、V(SUB/)out(/SUB)、L分別是該降壓轉(zhuǎn)換器的輸入電壓、輸出電壓和電感值;I(SUB/)1(/SUB)是輕負載時的輸出電流電平,I(SUB/)2(/SUB)是重負載時的輸出電流電平。

      圖4為輸出電容器的等效電路。


      圖4
      圖4

      在圖4中,C是等效純電容,R(SUB/)esr(/SUB)是等效串聯(lián)電阻。當(dāng)輸出電容器在加載過程中放電時,輸出等效純電容上的電壓可通過對方程1積分得到:

      輸出電容器兩端的總電壓降為ESR兩端的電壓降和等效純電容上的電壓降的和,因而:

      方程3是一個二次方程,在局部極點(local pole)處出現(xiàn)極值。局部極點發(fā)生在:

      在方程4中,最大電壓降發(fā)生在t = tlp_d,其值為:

      如果tlp_d是負數(shù),那么最大電壓降實際發(fā)生在t=0,因為在t>0區(qū)間是單調(diào)衰減的,因而,最大電壓降為:

      類似地,在卸載過程中輸出電容充上了電,通過對方程2進行積分可得到輸出電容器兩端在等效純電容上的電壓提升:

      輸出電容兩端的總的電壓提升為ESR兩端的電壓提升和等效純電容上電壓提升的和,因而:

      方程6是一個二次方程,在局部極點處出現(xiàn)極值。局部極點發(fā)生在:

      最大電壓提升發(fā)生在t = tlp_r,其值為:

      如果tlp_r是負數(shù),那么最大電壓提升實際發(fā)生在t=0,因為在t>0區(qū)間方程是單調(diào)衰減函數(shù),因而,最大電壓提升為:

      以圖像處理器單元(GPU)為例,我們使用12V的三芯鋰離子電池,通過降壓轉(zhuǎn)換器把該電壓轉(zhuǎn)換到來為GPU供電。在小功率和大功率模式,GPU的耗流量分別為和。保證GPU正常工作的電壓范圍為 +/-75mV。假設(shè)降壓轉(zhuǎn)換器的電感值初選為2.2微亨,解耦電容為330微法并帶有4毫歐的ESR,那么:

      V(SUB/)in(/SUB) = 12 V,V(SUB/)in(/SUB)= 1.5 V,L = 2.2 μH,C = 330 μF,R(SUB/)esr(/SUB)= 5 mΩ,I(SUB/)1(/SUB)=0.5 A,I(SUB/)2(/SUB) = 8.5 A

      把上述參數(shù)代入方程4和方程7,在加載過程(負載電流從躍升到)中,輸出電容陣列上的最大電壓降發(fā)生在t=微秒,其值為。

      在卸載過程(負載電流從躍降到)中,輸出電容陣列的最大電壓提升發(fā)生在t=10.4微秒,其值為。

      重復(fù)試算可得到滿足 +/-75mV電壓要求的最優(yōu)值:C=720微法,R(SUB/)esr(/SUB)=6.2微歐。

      陶瓷電容器ESR小但電容量也小,但陶瓷電容器的低ESR效應(yīng)只在它保有能量期間(按C(dv/dt)=I計算)有效。電解電容器ESR大且電容量大,但電解電容器的大電容效應(yīng)只表現(xiàn)在其諧振頻率內(nèi)(按R(SUB/)esr(/SUB)C計算)。聚合物鉭電容器處于兩者之間——ESR相對較小,電容相對較大。

      用哪些器件來產(chǎn)生720微法電容和6.2毫歐ESR呢?可用兩個330微法30毫歐(ESR)聚合物鉭電容器和6個10微法2毫歐(ESR)陶瓷電容器構(gòu)成一個電容器陣列。

      在電容器陣列中,應(yīng)根據(jù)器件的諧振頻率遞減的次序來安排電容器與負載的相對位置。陶瓷電容諧振頻率最高,應(yīng)最接近于負載,聚合物鉭電容其次,電解電容離負載最遠。

      從方程4和方程7可以看出,選用小電感更有利于減少電壓偏離。把電感從2.2微亨減小到1.2微亨將可把電容值從720微法削減到390微法。對降壓轉(zhuǎn)換器來說,電感值是一個重要參數(shù),應(yīng)綜合考慮效率優(yōu)化、電感紋波電流和輸出電容陣列計算等因素。

      作者:Takashi Kanamori

        應(yīng)用工程師

        Summit Microelectronics公司


      下一篇: ADI、南瑞繼保“聯(lián)姻

      上一篇: 峰值檢測器電路設(shè)計一

      主站蜘蛛池模板: 国产亚洲综合成人91精品| 亚洲免费综合色在线视频| 91在线亚洲综合在线| 国产综合久久久久久| 亚洲伊人久久成综合人影院| 狠狠色丁香婷婷综合尤物| 亚洲国产成人久久综合一 | 亚洲欧美日韩综合久久久| 天天做天天爱天天综合网| 久久丝袜精品综合网站| 亚洲第一综合天堂另类专| 久久香蕉综合色一综合色88| 婷婷亚洲综合五月天小说在线| 亚洲综合色自拍一区| 热综合一本伊人久久精品| 激情综合亚洲色婷婷五月APP| 加勒比色综合久久久久久久久| 色噜噜狠狠色综合网| 在线亚洲97se亚洲综合在线 | 狠狠色丁香婷婷综合久久来来去| 亚洲欧洲国产综合AV无码久久| 亚洲五月综合缴情在线观看| 狠狠色综合久久久久尤物| 热综合一本伊人久久精品 | 久久国产综合精品SWAG蓝导航| 亚洲欧洲国产综合| 亚洲综合激情视频| 久久综合中文字幕| 亚洲国产综合专区在线电影| 国产美女亚洲精品久久久综合 | 97久久天天综合色天天综合色| 亚洲国产亚洲综合在线尤物 | 亚洲综合在线成人一区| 天天久久影视色香综合网 | 亚洲国产成人久久综合一区77 | 色婷婷综合久久久久中文一区二区| 久久88色综合色鬼| 婷婷国产天堂久久综合五月| 久久综合久久综合亚洲| 香蕉综合在线视频91| 国产成人精品综合久久久久|