<rt id="m4md3"></rt>
  • <bdo id="m4md3"><meter id="m4md3"></meter></bdo>
  • <label id="m4md3"></label>
      <center id="m4md3"><optgroup id="m4md3"></optgroup></center>
      產(chǎn)品分類

      當前位置: 首頁 > 工業(yè)電氣產(chǎn)品 > 高低壓電器 > 電加熱器 > 電阻加熱器

      類型分類:
      科普知識
      數(shù)據(jù)分類:
      電阻加熱器

      為什么GaN用于D類放大器獨有優(yōu)勢

      發(fā)布日期:2022-10-18 點擊率:52

      本文來自與非網(wǎng)
       
      傳統(tǒng)的音頻放大技術(shù)是一個充滿挑戰(zhàn)的領(lǐng)域,發(fā)燒友們對于構(gòu)成家庭音頻最佳設(shè)置的要素有明顯不同意見。對于那些堅持使用經(jīng)典放大器拓撲架構(gòu)的用戶,他們的要求主要集中體現(xiàn)在準確的音頻再現(xiàn)方面,而幾乎不考慮解決方案的整體用電效率。雖然這在家庭音頻環(huán)境中完全合理,但在許多其它應(yīng)用中都要求較高的放大器效率。這或許是為了節(jié)省能源,并延長電池壽命,或是為了減少散熱,從而使產(chǎn)品更致密、更緊湊。 
       
      音頻放大器有幾種基本類型,包括 A 類、AB 類和 B 類,它們都利用其晶體管的線性區(qū)域,并以最小失真完美地再現(xiàn)輸入音頻信號。研究表明,這種設(shè)計理論上可以實現(xiàn)高達 80%的效率,但實際上,它們的效率約為 65%或更低。在當今由電池供電的智能手機、數(shù)字增強型無繩電信(DECT)手機和藍牙揚聲器等電子產(chǎn)品中,效率低下會對電池壽命產(chǎn)生巨大影響。像在電子行業(yè)的大多數(shù)其他領(lǐng)域(如電源轉(zhuǎn)換器)一樣,使用開關(guān)技術(shù),而非線性技術(shù)的設(shè)計方法似乎能夠有望實現(xiàn)突破。 
       
      D 類放大器首先是在上世紀 50 年代出現(xiàn),它使用一對開關(guān)器件進行推 / 挽配置(圖 1)。脈沖寬度調(diào)制(PWM)信號占空比由輸入音頻信號控制,可確保開關(guān)器件處于打開或關(guān)斷狀態(tài),從而將其線性區(qū)域的操作保持在最低水平。這不僅能夠?qū)崿F(xiàn) 100%的理論效率,而且還具有零失真的潛力。 
      1
      當時,市場上只有鍺晶體管,但是它經(jīng)過證明不適合這種開關(guān)拓撲架構(gòu)的需求,因此早期的放大器設(shè)計并不成功。直到后來,隨著 MOSFET 技術(shù)的出現(xiàn),D 類設(shè)計才得起死回生。如今,此類放大器因其高能效而在各個領(lǐng)域得到廣泛應(yīng)用。在當今的平板電視和汽車音響控制單元等設(shè)計中,緊湊性是一項非常迫切的要求,D 類放大器在其中也很受歡迎,因為它通常不需要笨重的散熱器。 
       
      基于 GaN 的高電子遷移率晶體管(HEMT)是一種新技術(shù),可用作 D 類設(shè)計中的開關(guān)器件,并可提供更高的效率和音頻質(zhì)量。 
       
      滿足 D 類放大器的需求
       
      為了能夠接近 D 類放大器理論上的高性能,開關(guān)器件需要具備低導(dǎo)通電阻,以最大程度地降低 I2R 損耗。GaN 器件具有比 Si MOSFET 低得多的導(dǎo)通電阻,并且可以通過較小的芯片面積實現(xiàn)。反過來,這種小芯片封裝也可以幫助設(shè)計師將更多緊湊型放大器推向市場。 
       
      開關(guān)損耗是另一個需要充分考慮的因素。在中、高功率輸出時,D 類放大器的性能非常出眾。但是,由于功率器件中的損耗,功率輸出最低時的效率也最低。 
       
      為了克服這一挑戰(zhàn),一些 D 類放大器采用兩種工作模式。在播放低音量音頻時,這種多級技術(shù)限制了功率器件可以切換到的輸出電壓。一旦輸出音量達到設(shè)定的閾值,開關(guān)的輸出電壓軌就會增大,從而可提供完整的電壓擺幅。為了進一步降低開關(guān)損耗的影響,在低輸出量時可以使用零電壓開關(guān)(ZVS)技術(shù),而在高功率水平時改為硬開關(guān)。 
       
      當使用 Si MOSFET 實施時,由于功率器件關(guān)斷和導(dǎo)通時輸出的非零電壓,硬開關(guān)模式會導(dǎo)致體二極管中產(chǎn)生電荷累積。之后,積累的反向恢復(fù)電荷(Qrr)需要放電,這其中需要的時間在 PWM 控制實施過程中應(yīng)該考慮。而如果采用 GaN 進行設(shè)計,則沒有這個問題,因為這些晶體管沒有固有的體二極管,因此也就沒有 Qrr,這樣可以實現(xiàn)更高的總體效率、改進的失真系數(shù)以及更清晰的開關(guān)波形。 
       
      放大器在零電壓開關(guān)模式下工作時,由于輸出的轉(zhuǎn)變是通過電感電流換向來實現(xiàn),可有效消除開關(guān)中的開關(guān)損耗和由此產(chǎn)生的功率損失。然而,與所有半橋設(shè)計一樣,需要考慮直通(shoot-through)問題,即高側(cè)和低側(cè)開關(guān)同時導(dǎo)通的現(xiàn)象。通常可以插入一個稱為消隱時間(blanking time)的短延遲,以確保其中一個開關(guān)在導(dǎo)通之前另一個開關(guān)完全關(guān)斷。需要注意的是,該延遲會影響 PWM 信號,導(dǎo)致音頻輸出失真,因此設(shè)計中的一個目標是盡可能縮短延遲,以維持音頻保真度。該延遲的長度取決于功率器件的輸出電容 Coss。雖然 GaN 晶體管尚未完全消除 Coss,但明顯低于 Si MOSFET 器件。因此,使用 GaN 時,其較短的消隱時間會導(dǎo)致更小的放大器失真。 
       
      盡管上面提到的改進,這種電容中儲存的能量仍有待處理,在下一個導(dǎo)通周期中被消耗掉。但是這些損耗的影響在較高開關(guān)頻率下尤其明顯,因此基于 GaN 的設(shè)計比 Si 放大器具有更高的效率。 
       
      如何實現(xiàn) GaN 的優(yōu)勢
       
      GaN HEMT 晶體管與 Si MOSFET 命名其各個端子的方式完全相同,具有柵極、漏極和源極。借助于柵極和源極之間的二維電子氣體(2DEG),它們實現(xiàn)了極低電阻,由于提供有電子池,因此可有效地實現(xiàn)短路。當不加?xùn)艠O偏壓(VGS = 0V)時,p-GaN 柵極將停止導(dǎo)通。GaN HEMT 是雙向器件,這一點與硅器件不同。因此,如果允許漏極電壓降至源極電壓以下,則可能會產(chǎn)生反向電流。GaN HEMT 晶體管具有潔凈的開關(guān)波形,這也是其優(yōu)勢所在,主要是沒有 Si MOSFET 中常見的體二極管(圖 2)。這是與 PN 結(jié)相關(guān)的大量開關(guān)噪聲的原因。 
      2
      業(yè)界已經(jīng)證實,在無散熱片情況下,D 類放大器設(shè)計可向 8Ω負載提供 160W 功率。一種此類原型采用了 IGT40R070D1 E8220 GaN HEMT 與 200V D 類驅(qū)動器 IRS20957S(圖 3),這種特殊的開關(guān)其 RDS(on)(max)僅為 70mΩ。如果使用散熱器,則放大器可以輸出高達 250W 的功率,并且在 100W 時達到非常卓越的 0.008%THD+N。從零電壓開關(guān)到硬開關(guān)可能會導(dǎo)致 THD+N 測量值出現(xiàn)駝峰。工作在 500 kHz 頻率時,該設(shè)計沒有表現(xiàn)出明顯的失真變化(發(fā)生在幾瓦情況下),并且硬開關(guān)區(qū)域保持非常安靜和清潔。 
      3
      總結(jié)
       
      多年來,設(shè)計人員一直在使用 Si MOSFET 進行 D 類放大器設(shè)計,這要歸功于其在性能優(yōu)化方面不斷取得的進步。然而,要進一步改進 Si MOSFET 功能和特性已經(jīng)非常困難。此外,降低 RDS(on)將需要更大的晶片尺寸,導(dǎo)致更難以構(gòu)建緊湊的音頻放大器設(shè)計。然而,GaN HEMT 突破了這一限制,同時也消除了 Qrr,再加上較低的 Coss 以及在較高開關(guān)頻率下運行的能力,可以創(chuàng)建體積更小、更加緊湊的設(shè)計,通常情況下無需使用散熱器。所進行的 THD+N 測量還表明,這項新技術(shù)可以實現(xiàn)出色的音頻性能。

      下一篇: PLC、DCS、FCS三大控

      上一篇: 射頻開關(guān):SPDT、級聯(lián)

      推薦產(chǎn)品

      更多
      主站蜘蛛池模板: 国产综合精品久久亚洲| 精品福利一区二区三区精品国产第一国产综合精品 | 亚洲AV综合色区无码一二三区| 久久婷婷五月综合色奶水99啪| 狠狠色狠狠色综合日日不卡| 亚洲色欲久久久综合网| 久久综合国产乱子伦精品免费| 久久综合AV免费观看| 国产成人久久综合热| 99久久综合狠狠综合久久一区| 婷婷综合久久中文字幕蜜桃三电影| 亚洲人成依人成综合网| 色综久久天天综合绕视看| 成人亚洲综合天堂| 狠狠人妻久久久久久综合| 亚洲国产精品成人综合久久久| 天天av天天翘天天综合网| 亚洲国产综合精品中文字幕| 久久婷婷五月综合尤物色国产| 国产99久久亚洲综合精品| 久久久久久久尹人综合网亚洲| 国产综合精品在线| 综合欧美五月丁香五月| 精品综合久久久久久98| 久久久久综合网久久| 国产天天综合永久精品日| 天天综合网网欲色| 色天使久久综合网天天| 丁香亚洲综合五月天婷婷| 一本久道久久综合狠狠躁| 色综合久久综精品| 亚洲综合成人婷婷五月网址| 久久综合国产乱子伦精品免费| 亚洲色偷偷偷鲁综合| 狠狠色伊人亚洲综合成人| 亚洲综合精品网站在线观看| 香蕉国产综合久久猫咪| 婷婷综合久久中文字幕蜜桃三电影| 亚洲AV综合色一区二区三区| 色噜噜狠狠成人中文综合| 中文字幕亚洲综合精品一区|