<rt id="m4md3"></rt>
  • <bdo id="m4md3"><meter id="m4md3"></meter></bdo>
  • <label id="m4md3"></label>
      <center id="m4md3"><optgroup id="m4md3"></optgroup></center>
      產品分類

      當前位置: 首頁 > 工業電子產品 > 無源元器件 > 二極管

      類型分類:
      科普知識
      數據分類:
      二極管

      電力逆變器中的二極管作用

      發布日期:2022-10-09 點擊率:85

      【導讀】在家電應用中,最主要的就是高效率和節能,三相無刷直流電機正是因為具有效率高、尺寸小的優點,被廣泛的應用在家電設備及其他很多應用中。除此之外,由于還將機械換向裝置替換成電子換向器,三相無刷電機進而被認為可靠性比原來更高了。

       

      在家電應用中,最主要的就是高效率和節能,三相無刷直流電機正是因為具有效率高、尺寸小的優點,被廣泛的應用在家電設備及其他很多應用中。除此之外,由于還將機械換向裝置替換成電子換向器,三相無刷電機進而被認為可靠性比原來更高了。

       

      標準的三相功率級(power stage)被用來驅動一個三相無刷直流電機,如圖1所示。功率級產生一個電場,為了使電機很好地工作,這個電場必須保持與轉子磁場之間的角度接近 90°。六步序列控制產生6個定子磁場向量,這些向量必須在一個指定的轉子位置下改變。霍爾效應傳感器掃描轉子的位置。為了向轉子提供6個步進電流,功率級利用6個可以按不同的特定序列切換的功率MOSFET。下面解釋一個常用的切換模式,可提供6個步進電流。

       

      電力逆變器中的二極管作用

       

      MOSFET Q1、Q3和Q5高頻(HF)切換,Q2、Q4和Q6低頻(LF)切換。當一個低頻MOSFET處于開狀態,而且一個高頻MOSFET 處于切換狀態時,就會產生一個功率級。

       

      步驟1) 功率級同時給兩個相位供電,而對第三個相位未供電。假設供電相位為L1、L2,L3未供電。在這種情況下,MOSFET Q1和Q2處于導通狀態,電流流經Q1、L1、L2和Q4。

       

      步驟2) MOSFET Q1關斷。因為電感不能突然中斷電流,它會產生額外電壓,直到體二極管D2被直接偏置,并允許續流電流流過。續流電流的路徑為D2、L1、L2和Q4。

       

      步驟3) Q1打開,體二極管D2突然反偏置。Q1上總的電流為供電電流與二極管D2上的恢復電流之和。  顯示出其中的體-漏二極管。電流流入到體-漏二極管D2(見圖1),該二極管被正向偏置,少數載流子注入到二極管的區和P區。

       

      當MOSFET Q1導通時,二極管D2被反向偏置, N區的少數載流子進入P+體區,反之亦然。這種快速轉移導致大量的電流流經二極管,從N-epi到P+區,即從漏極到源極。電感L1對于流經Q2和Q1的尖峰電流表現出高阻抗。Q1表現出額外的電流尖峰,增加了在導通期間的開關損耗。

       

      為改善在這些特殊應用中體二極管的性能,研發人員開發出具有快速體二極管恢復特性MOSFET。當二極管導通后被反向偏置,反向恢復峰值電流Irrm較小。

       

      結合一種簡單的逆變器電路圖分析PWM逆變器電路的工作原理

       

      電力逆變器中的二極管作用

       

      電阻R2和電容C1套集成電路內部振蕩器的頻率。預設R1可用于振蕩器的頻率進行微調。14腳和11腳IC內部驅動晶體管的發射極終端。的驅動晶體管(引腳13和12)的集電極終端連接在一起,并連接到8 V軌(7808輸出)。可在IC的引腳14和15兩個180度,淘汰50赫茲脈沖列車。

       

      這些信號驅動器在隨后的晶體管階段。當14腳的信號為高電平,晶體管Q2接通,就這反過來又使晶體管Q4,Q5,Q6點從目前的+12 V電源(電池)連接流一個通過的上半部分(與標簽的標記)變壓器(T1)中,小學通過晶體管Q4,Q5和Q6匯到地面。

       

      因此誘導變壓器二次電壓(由于電磁感應),這個電壓220V輸出波形的上半周期。在此期間,11腳低,其成功的階段將處于非活動狀態。當IC引腳 11云高的第三季度結果Q7的獲取和交換,Q8和Q9將被打開。從+12 V電源通過變壓器的初級下半部和匯到地面通過晶體管的Q7,Q8,Q9,以及由此產生的電壓,在T2次級誘導有助于的下半部周期(標簽上標明)電流流 220V輸出波形。

       

      逆變電路的輸出電壓調節部分的工作原理

      逆變器輸出(T2的輸出)挖掘點的標記為B,C,并提供給變壓器T2的主。在變壓器T2的下降這個高電壓的步驟,橋梁D5整流它和這個電壓(將逆變器的輸出電壓成正比)是提供的PIN1通過奧迪R8,R9,R16和(該IC的內部錯誤放大器的反相輸入)這個電壓與內部參考電壓比較。

       

      此誤差電壓成正比的輸出電壓所需的值和IC調節占空比的驅動信號(引腳14和12)為了使輸出電壓為所需的值的變化。R9的預設,可用于調節逆變器輸出電壓,因為它直接控制變頻器的輸出電壓誤差放大器部分的反饋量。

       

      二極管D3和D4續流二極管,保護驅動級晶體管的開關變壓器(T2)初選時產生的電壓尖峰。R14和R15限制基地的第四季度和Q7。R12和 R13為第四季度和Q7防止意外的開關ON下拉電阻。C10和C11是繞過從變頻器的輸出噪聲。C8是一個濾波電容的穩壓IC 7805。R11的限制限制了電流通過LED指示燈D2的。

       

      電力逆變器中的二極管作用

      高效率和節能是家電應用中首要的問題。三相無刷直流電機因其效率高和尺寸小的優勢而被廣泛應用在家電設備中以及很多其他應用中。此外,由于采用了逆變器電子換向器代替機械換向裝置,三相無刷直流電機被認為可靠性更高。

       

      標準的三相功率級(power stage)被用來驅動一個三相無刷直流電機。功率級產生一個電場,為了使電機很好地工作,這個電場必須保持與轉子磁場之間的角度接近90°。六步序列控制產生6個定子磁場向量,這些向量必須在一個指定的轉子位置下改變。霍爾效應傳感器掃描轉子的位置。為了向轉子提供6個步進電流,功率級利用6個可以按不同的特定序列切換的功率MOSFET。下面解釋一個常用的切換模式,可提供6個步進電流。

       

      MOSFET Q1、Q3和Q5高頻(HF)切換,Q2、Q4和Q6低頻(LF)切換。當一個低頻MOSFET處于開狀態,而且一個高頻MOSFET 處于切換狀態時,就會產生一個功率級。

       

      步驟1) 功率級同時給兩個相位供電,而對第三個相位未供電。假設供電相位為L1、L2,L3未供電。在這種情況下,MOSFET Q1和Q2處于導通狀態,電流流經Q1、L1、L2和Q4。

       

      步驟2)MOSFET Q1關斷。因為逆變器電感不能突然中斷電流,它會產生額外電壓,直到體二極管D2被直接偏置,并允許續流電流流過。續流電流的路徑為D2、L1、L2和Q4。

       

      步驟3)Q1打開,體二極管D2突然反偏置。Q1上總的電流為供電電流(如步驟1)與二極管D2上的恢復電流之和。

       

      顯示出其中的體-漏二極管。在步驟2,電流流入到體-漏二極管D2(見圖1),該二極管被正向偏置,少數載流子注入到二極管的區和P區。

       

      當MOSFET Q1導通時,二極管D2被反向偏置, N區的少數載流子進入P+體區,反之亦然。這種快速轉移導致大量的電流流經二極管,從N-epi到P+區,即從漏極到源極。電感L1對于流經Q2和Q1的尖峰電流表現出高阻抗。Q1表現出額外的電流尖峰,增加了在導通期間的開關損耗。圖4a描述了MOSFET的導通過程。

       

      為改善在這些特殊應用中體二極管的性能,研發人員開發出具有快速體二極管恢復特性MOSFET。當二極管導通后被反向偏置,反向恢復峰值電流Irrm較小。

       

      在電力逆變電源中我們對比測試了標準的MOSFET和快恢復MOSFET。ST推出的STD5NK52ZD(SuperFREDmesh系列)放在Q2(LF)中,如圖4b所示。在Q1 MOSFET(HF)的導通工作期間,開關損耗降低了65%。采用STD5NK52ZD時效率和熱性能獲得很大提升(在不采用散熱器的自由流動空氣環境下,殼溫從60°C降低到50°C)。在這種拓撲中,MOSFET內部的體二極管用作續流二極管,采用具有快速體二極管恢復特性MOSFET更為合適。

       

      SuperFREDmesh技術彌補了現有的FDmesh技術,具有降低導通電阻,齊納柵保護以及非常高的dv/dt性能,并采用了快速體-漏恢復二極管。N溝道520V、1.22歐姆、4.4A STD5NK52ZD可提供多種封裝,包括TO-220、DPAK、I2PAK和IPAK封裝。該器件為工程師設計開關應用提供了更大的靈活性。其他優勢包括非常高的dv/dt,經過100%雪崩測試,具有非常低的本征電容、良好的可重復制造性,以及改良的ESD性能。此外,逆變器與其他可選模塊解決方案相比,使用分立解決方案還能在PCB上靈活定位器件,從而實現空間的優化,并獲得有效的熱管理,因而這是一種具有成本效益的解決方案。

       

       

      推薦閱讀:
      【干貨】繼電器的失效模式分析及安全繼電器的使用必要性
      詳述音頻放大器的輸出入阻抗
      探索電阻在電路中的應用奧妙!
      基于USB 供電的熱敏電阻精確溫度檢測電路
      如何最大限度提高Σ-Δ ADC驅動器的性能?

      要采購晶體么,點這里了解一下價格!

      下一篇: PLC、DCS、FCS三大控

      上一篇: 探討總線隔離后的接地

      推薦產品

      更多
      主站蜘蛛池模板: 亚洲综合久久1区2区3区| 欧美日韩色另类综合| 久久本道久久综合伊人| 中文字幕久久综合| 久久久久久久尹人综合网亚洲| 六月丁香激情综合成人| 亚洲人成综合在线播放| 久久九色综合九色99伊人| 久艾草国产成人综合在线视频| 伊人色综合久久天天| 亚洲色欲久久久综合网| 婷婷综合缴情亚洲狠狠尤物| 久久综合国产乱子伦精品免费| 国产精品亚洲综合一区在线观看| 激情综合色综合啪啪开心| 婷婷五月综合丁香在线| 人人狠狠综合久久88成人| 综合久久一区二区三区| 亚洲AV成人潮喷综合网| 亚洲人成综合网站7777香蕉| 久久久亚洲裙底偷窥综合| 熟女少妇色综合图区| 乱色熟女综合一区二区三区| 色婷婷狠狠久久综合五月| 亚洲国产品综合人成综合网站| 丁香婷婷色五月激情综合深爱| 东京热TOKYO综合久久精品| 国产一区二区三区亚洲综合| 伊人情人综合成人久久网小说| 亚洲日韩久久综合中文字幕| 色偷偷91综合久久噜噜噜男男| 亚洲人成人伊人成综合网无码| 久久综合九色综合久99| 亚洲国产精品成人综合久久久 | 色综合天天综一个色天天综合网| 综合久久一区二区三区| 婷婷四房综合激情五月在线| 久久伊人久久亚洲综合| 狠狠色狠狠色综合日日五| 精品综合一区二区三区| 亚洲国产成人久久综合碰|