<rt id="m4md3"></rt>
  • <bdo id="m4md3"><meter id="m4md3"></meter></bdo>
  • <label id="m4md3"></label>
      <center id="m4md3"><optgroup id="m4md3"></optgroup></center>
      產(chǎn)品分類

      當(dāng)前位置: 首頁 > 工業(yè)控制產(chǎn)品 > 自動(dòng)化控制 > 光伏逆變器

      類型分類:
      科普知識(shí)
      數(shù)據(jù)分類:
      光伏逆變器

      大功率電池供電設(shè)備逆變器板如何助力熱優(yōu)化

      發(fā)布日期:2022-04-20 點(diǎn)擊率:58


      如今,電池供電電機(jī)驅(qū)動(dòng)解決方案通常可以用非常低的工作電壓提供數(shù)百瓦的功率。在這些應(yīng)用中,為確保整個(gè)系統(tǒng)的能效和可靠性,必須正確管理電機(jī)驅(qū)動(dòng)設(shè)備的電流。事實(shí)上,電機(jī)電流可能會(huì)超過數(shù)十安培,導(dǎo)致逆變器內(nèi)部耗散功率提高。給逆變器元器件施加較高的功率將會(huì)導(dǎo)致逆變器工作溫度升高,性能下降,如果超過最大允許額定功率,甚至?xí)蝗煌V构ぷ鳌?yōu)化熱性能同時(shí)縮減尺寸,是逆變器設(shè)計(jì)過程中的重要一環(huán),如果處理不當(dāng),可能會(huì)埋下隱患。用現(xiàn)場驗(yàn)證方法連續(xù)改進(jìn)原型生產(chǎn)可以解決這個(gè)問題,但是,電熱評(píng)估是完全分開的兩個(gè)過程,并且在設(shè)計(jì)過程中從未考慮電-熱耦合效應(yīng),因?yàn)檫@會(huì)導(dǎo)致多次重復(fù)設(shè)計(jì),延長產(chǎn)品上市時(shí)間。目前電熱評(píng)估有一種更有效的替代方法,就是利用現(xiàn)代模擬技術(shù)優(yōu)化電機(jī)控制系統(tǒng)的電熱性能。Cadence? Celsius? Thermal Solver溫度模擬器是行業(yè)領(lǐng)先的用于系統(tǒng)分析的電熱協(xié)同仿真軟件,可在短短幾分鐘內(nèi)從電熱兩個(gè)角度全面準(zhǔn)確地評(píng)估設(shè)計(jì)性能。作為世界領(lǐng)先的工業(yè)電機(jī)控制集成電路制造商,意法半導(dǎo)體用Celsius? 軟件改進(jìn)了evalSTDRIVE101 評(píng)估板的熱性能,開發(fā)出一個(gè)輸出電流高達(dá) 15 Arms的三相無刷電機(jī)逆變器,為終端應(yīng)用設(shè)計(jì)人員開發(fā)逆變器提供了一個(gè)參考。在本文中,我們借此機(jī)會(huì)講解如何減少熱優(yōu)化工作量,同時(shí)讓evalSTDRIVE101 達(dá)到生產(chǎn)級(jí)解決方案。

      evalSTDRIVE101

      evalSTDRIVE101 基于75 V三半橋柵極驅(qū)動(dòng)器STDRIVE101和六個(gè)連成三個(gè)半橋的STL110N10F7 功率 MOSFET開關(guān)管。STDRIVE101采用4x4 毫米四方扁平無引腳 (QFN)封裝,集成安全保護(hù)功能,非常適合電池供電解決方案。Celsius? 顯著簡化了 evalSTDRIVE101的熱電性能優(yōu)化過程,能夠在短時(shí)間內(nèi)實(shí)現(xiàn)尺寸緊湊的可靠設(shè)計(jì)。下面所示的模擬結(jié)果用于反復(fù)調(diào)整元器件的位置,改進(jìn)板層和跡線的形狀,調(diào)整板層厚度,增加或移除通孔,最終得到一個(gè)生產(chǎn)級(jí)逆變器解決方案。優(yōu)化后,evalSTDRIVE101是一塊覆銅厚度2 oz的四層PCB板,寬 11.4 厘米,高 9 厘米,使用 36 V 電池電壓向負(fù)載提供高達(dá) 15 Arms 電流。從熱角度來看,evalSTDRIVE101最關(guān)鍵的地方是功率級(jí)區(qū)域,其中包括功率MOSFET開關(guān)管、檢流電阻、旁路陶瓷電容、大容量電解電容和輸出端口。這部分的布局被大幅縮小,僅占整個(gè)電路板尺寸的一半,即 50 cm2。在這里,MOSFET 的放置和布線經(jīng)過特別慎重考慮,因?yàn)樵诠ぷ髌陂g,逆變器大部分功率損耗都是由這些開關(guān)管造成的。所有MOSFET漏極端子的覆銅面積在頂層最大,在其它層盡可能做同樣大或更大,以改善向底層表面導(dǎo)熱的熱傳輸效率。通過這種方式,電路板的正面和背面都有助于空氣自然對(duì)流和熱輻射。直徑 0.5 毫米的通孔負(fù)責(zé)不同層之間的電連接和熱傳輸,促進(jìn)空氣流動(dòng)并改善冷卻效果。通孔網(wǎng)格位于 MOSFET 裸露焊盤的正下方,但通孔直徑減小到 0.3 毫米,以防止焊膏在孔中回流。

      功耗估算

      evalSTDRIVE101的熱優(yōu)化過程是從評(píng)估逆變器運(yùn)行期間的耗散功率開始的,逆變器是溫度模擬器的一個(gè)輸入端。逆變器損耗分為兩類:在電路板跡線內(nèi)因焦耳效應(yīng)產(chǎn)生的功率損耗和電子元件造成的功率損耗。雖然Celsius? 可以通過直接導(dǎo)入電路板布局?jǐn)?shù)據(jù)精確計(jì)算電流密度和電路板損耗,但是,還必須考慮電子元件引起的損耗。雖然電路模擬器可以提供非常準(zhǔn)確的結(jié)果,但我們還是決定用簡化的公式算出合理的功率損耗,提出近似值。事實(shí)上,制造商可能無法獲得元器件的電氣模型,而且,因?yàn)槿狈?shù)據(jù),難以或無法從頭開始建模,而我們提供的公式僅需要產(chǎn)品數(shù)據(jù)手冊的基本信息。排除次生現(xiàn)象,引起逆變器耗散功耗的主要原因是檢流電阻器 P_sh 和 MOSFET內(nèi)部的功率損耗。這些損耗包括:導(dǎo)通損耗P_cond、開關(guān)損耗P_sw和二極管壓降損耗P_dt:

      大功率電池供電設(shè)備逆變器板如何助力熱優(yōu)化


      參數(shù)
      定義
      數(shù)值
         逆變器輸出電流
      15 Arms
         逆變器電源電壓
      36 V
         死時(shí)
      500 ns
         開關(guān)頻率
      20 kHz
         MOSFET 導(dǎo)通電阻
      5 m?
         MOSFET 米勒平臺(tái)電荷
      18 nC
         MOSFET 平臺(tái)電壓
      6 V
         MOSFET導(dǎo)通閾壓
      3 V
         MOSFET輸入電容
      5117 pF
         MOSFET體二極管正向電壓
      1 V
         STDRIVE101柵極驅(qū)動(dòng)電壓
      12 V
         導(dǎo)通柵極驅(qū)動(dòng)電阻
      33 ?
         STDRIVE101灌電流
      0.6 A
         檢流電阻
      5 m?


      大功率電池供電設(shè)備逆變器板如何助力熱優(yōu)化

      每個(gè) MOSFET 的估算耗散功率為1.303 W,每個(gè)檢流電阻器的估算耗散功率為 0.281 W。

      熱模擬

      Celsius?可以讓設(shè)計(jì)人員做熱模擬實(shí)驗(yàn),包括系統(tǒng)電氣分析,顯示走線和通孔的電流密度和電壓降。這些模擬試驗(yàn)要求設(shè)計(jì)人員必須在系統(tǒng)中使用電路模型,定義相關(guān)電流環(huán)路。圖1所示是evalSTDRIVE101的每個(gè)半橋所用的電路模型。模型包括位于輸出和電源輸入之間的兩個(gè)恒流發(fā)生器和三個(gè)旁通 MOSFET 和檢流電阻器的短路。這兩個(gè)電流環(huán)路與整個(gè)電源軌和接地層的實(shí)際平均電流非常接近,而輸出路徑電流略微高一點(diǎn),便于評(píng)估設(shè)計(jì)韌性。圖 2 和圖 3 顯示了電流為 15 Arms的evalSTDRIVE101 的電壓降和電流密度。對(duì)地參考電壓的壓降突出了這個(gè)板子的布局經(jīng)過特別優(yōu)化,沒有瓶頸,并且 U、V 和 W 的輸出端在 43 mV、39 mV 和 34 mV 時(shí)電壓降非常均衡。U輸出端的壓降最大,而W輸出端的壓降是三者中最低的,因?yàn)閃端口到電源連接器的路徑長度較短。電流在各個(gè)路徑中分布均衡,平均密度低于 15 A/mm2,這是走線尺寸的功率推薦值。在 MOSFET、分流電阻器和連接器附近的一些區(qū)域是紅色的,這代表電流密度較高,因?yàn)檫@些元器件的端子比下面的電源跡線小。不過,最大電流密度遠(yuǎn)低于 50 A/mm2 的限制,在實(shí)際應(yīng)用中不會(huì)導(dǎo)致可靠性問題發(fā)生。

      大功率電池供電設(shè)備逆變器板如何助力熱優(yōu)化

      模擬器使設(shè)計(jì)人員能夠安裝運(yùn)行穩(wěn)態(tài)模擬或瞬態(tài)模擬測試。穩(wěn)態(tài)模擬提供一個(gè)板層和組件的2D溫度圖,而瞬態(tài)模擬則提供每個(gè)模擬時(shí)刻的溫度圖和升溫曲線,但模擬時(shí)間更長。穩(wěn)態(tài)模擬工具可以用于瞬態(tài)模擬,但還需要另外為組件定義耗散功率函數(shù)。瞬態(tài)模擬適用于為電源不是同時(shí)工作的系統(tǒng)定義工作狀態(tài)和評(píng)估達(dá)到穩(wěn)態(tài)溫度所需的時(shí)間。

      evalSTDRIVE101的模擬實(shí)驗(yàn)條件是 28 °C 環(huán)境溫度,以傳熱系數(shù)作為邊界條件,器件分析采用雙電阻熱模型代替 Delphi 等詳細(xì)熱模型,可以直接從元器件數(shù)據(jù)手冊中獲得模型,不過會(huì)略微犧牲模擬精度。圖 4 所示是evalSTDRIVE101 的穩(wěn)態(tài)模擬結(jié)果,圖 5 是瞬態(tài)模擬結(jié)果。瞬態(tài)模擬使用了階躍功率函數(shù),以零時(shí)間啟用所有 MOSEFT 和檢流電阻器。模擬結(jié)果確定 U 半橋區(qū)域是電路板上最熱的區(qū)域。 Q1 MOSFET(高邊)溫度為 94.06 °C,緊隨其后的是 Q4 MOSFET(低邊)、R24 和 R23 檢流電阻器,分別為 93.99 °C、85.34 °C 和 85.58 °C。

      大功率電池供電設(shè)備逆變器板如何助力熱優(yōu)化

      大功率電池供電設(shè)備逆變器板如何助力熱優(yōu)化

      熱表征實(shí)驗(yàn)裝置

      evalSTDRIVE101 熱性能實(shí)驗(yàn)表征是在組裝好的電路板上做的。為了方便實(shí)驗(yàn),沒有用連接到制動(dòng)臺(tái)的電機(jī),而是考慮使用一個(gè)等效的測試臺(tái),如圖 6 所示。evalSTDRIVE101 連接到控制板,生成所需的驅(qū)動(dòng)信號(hào),并放置在有機(jī)玻璃箱內(nèi),以獲得空氣對(duì)流冷卻,避免意外的空氣對(duì)流。在盒子上方放置了一臺(tái)熱成像攝像機(jī)(日本航空電子公司的 TVS-200 型),通過盒蓋上的一個(gè)孔,將電路板全部收入拍攝框內(nèi)。電路板輸出端連接一個(gè)三相負(fù)載,驅(qū)動(dòng)系統(tǒng)使用36 V電源。負(fù)載是由三個(gè)連成星形結(jié)構(gòu)的線圈組成,以模擬真實(shí)的電機(jī)工作特性。每個(gè)線圈都是 30 A 的飽和電流、300 μH 的電感和 25 mΩ 的寄生電阻。低寄生電阻大大降低了在線圈內(nèi)部的焦耳熱效應(yīng),有利于電路板和負(fù)載之間的功率無損傳輸。通過控制板施加適當(dāng)?shù)恼译妷海诰€圈內(nèi)部產(chǎn)生三個(gè)15 Arms 的正弦電流。使用這種方法,功率級(jí)工作環(huán)境非常接近電機(jī)驅(qū)動(dòng)實(shí)際應(yīng)用的工作條件下,優(yōu)點(diǎn)是不需要任何控制回路。

      大功率電池供電設(shè)備逆變器板如何助力熱優(yōu)化

      功率損耗測量

      功率級(jí)每個(gè)器件的耗散功率的數(shù)據(jù)準(zhǔn)確性無疑是影響模擬結(jié)果的一個(gè)因素。MOSFET 和檢流電阻的數(shù)據(jù)是使用簡化公式計(jì)算得來,因此提出了近似值。測量電路板,以評(píng)估耗散功率的量化誤差。電路板的功率損耗 Ploss的測量值是輸入功率 與三個(gè)輸出端, , 輸出功率的差值。使用示波器(Teledyne LeCroy 的 HDO6104-MS 型)測量,并在波形中使用適當(dāng)?shù)臄?shù)學(xué)函數(shù):首先,逐點(diǎn)計(jì)算每個(gè)測量點(diǎn)的電壓和電流的乘積;然后,計(jì)算在一個(gè)整數(shù)正弦周期數(shù)內(nèi)的平均功率。下表列出了在環(huán)境溫度下的測量數(shù)據(jù)和功率級(jí)達(dá)到穩(wěn)態(tài)條件時(shí)的高溫測量結(jié)果,還給出了前面用公式估算的電路板耗散功率。


      功率
      測量
      @ Tamb [W]
      測量
      @ Thot [W]
      估算
      [W]
         27.51
      28.39
      -
         5.6
      5.7
      -
         6.5
      6.6
      -
         6.1
      6.2
      -
         9.36
      9.89
      9.5


      結(jié)果表明,測量值和估算值之間非常接近,與提出的近似值一致。在室溫時(shí),公式高估測量值1.5%,在高溫條件,低估測量值大約 3.9%。這個(gè)結(jié)果與 MOSFET導(dǎo)通電阻和檢流電阻的可變性一致,因?yàn)樵谟?jì)算中使用的是標(biāo)稱值。由于線圈電阻和 MOSFET 電阻隨溫度升高而增加,高溫功率值都比室溫功率值高,符合預(yù)期。數(shù)據(jù)還顯示三個(gè)輸出的測量功率存在差異。這種現(xiàn)象是因?yàn)槿嘭?fù)載不均衡造成的,因?yàn)槊總€(gè)線圈的 L 和 R 值略有不同。然而,這種影響起到的作用微不足道,因?yàn)橛^察到的差值低于測量和估算之間的差值。

      溫度結(jié)果

      在負(fù)載內(nèi)產(chǎn)生正弦電流和熱像儀采集拍照是同步的。紅外熱像儀設(shè)為每 15 秒拍攝一次熱圖像,每次拍照都包含元器件 Q1、Q4 和 R23 的三個(gè)溫度標(biāo)記。系統(tǒng)保持工作狀態(tài),直到大約 25 分鐘后達(dá)到穩(wěn)態(tài)條件為止。在測試結(jié)束時(shí)檢測到箱內(nèi)環(huán)境溫度約為 28°C。圖 7 顯示了來自溫度標(biāo)記的電路板升溫瞬變,圖 8 顯示了電路板上的最終溫度。測量結(jié)果表明,Q1 MOSFET 是整個(gè)電路板中最熱的元器件,溫度為 93.8°C,而 Q4 MOSFET 和 R23 電阻分別達(dá)到了 91.7°C 和 82.6°C。根據(jù)前文的Celsius? 模擬結(jié)果,Q1 MOSFET是 94.06°C ,Q4 MOSFET 是93.99°C,R23是85.58°C,與測量結(jié)果非常接近。直接比較圖 5 與圖 7不難發(fā)現(xiàn),散熱瞬態(tài)時(shí)間常數(shù)也是高達(dá)一致。

      大功率電池供電設(shè)備逆變器板如何助力熱優(yōu)化

      大功率電池供電設(shè)備逆變器板如何助力熱優(yōu)化

      總結(jié)

      意法半導(dǎo)體最近發(fā)布了利用 Cadence?Celsius? Thermal Solver溫度模擬器開發(fā)的evalSTDRIVE101 評(píng)估板。該板電路板可以驅(qū)動(dòng)電池供電設(shè)備的高功率低電壓三相無刷電機(jī)。這塊板子包括一個(gè) 50 cm2 的緊湊的功率級(jí),無需散熱器或增裝冷卻設(shè)備即可向電機(jī)提供超過 15 Arms 的電流。使用溫度模擬器內(nèi)部的不同模擬功能,不僅可以預(yù)測電路板的溫度分布及功率級(jí)組件的熱點(diǎn),還可以詳細(xì)描述電源跡線的電壓降和電流密度,而這很難或者根本不可能通過實(shí)驗(yàn)測量獲得。在從設(shè)計(jì)初期到最終定案的整個(gè)開發(fā)過程中,模擬結(jié)果可以讓開發(fā)者快速優(yōu)化電路板布局,調(diào)整元器件位置,改進(jìn)布局缺陷。紅外熱像儀熱表征測試表明,穩(wěn)態(tài)溫度以及瞬態(tài)溫度曲線的模擬值和測量值之間具有良好的一致性,證明電路板具有出色的性能,溫度模擬器可有效地幫助設(shè)計(jì)人員降低設(shè)計(jì)裕度,加快產(chǎn)品上市。


      下一篇: PLC、DCS、FCS三大控

      上一篇: 基于AllJoyn框架的跨

      推薦產(chǎn)品

      更多
      主站蜘蛛池模板: 亚洲妓女综合网99| 亚洲国产综合无码一区| 精品综合久久久久久97超人| 国产婷婷色综合AV蜜臀AV| 一本色道久久88精品综合| 亚洲狠狠婷婷综合久久久久| 国产婷婷综合丁香亚洲欧洲| 天天综合在线观看| 香蕉国产综合久久猫咪| 亚洲综合自拍成人| 日本久久综合久久综合| 中文网丁香综合网| 色噜噜狠狠色综合久| 婷婷久久香蕉五月综合加勒比| 色婷婷五月综合欧美图片| 亚洲国产天堂久久综合网站| 色噜噜狠狠色综合中国| 久久综合鬼色88久久精品综合自在自线噜噜 | 国产成人综合亚洲绿色| 国产亚洲综合色就色| 伊人久久大香线蕉综合5g| 2020久久精品亚洲热综合一本| 一本一道久久综合狠狠老| 久久久久久久综合日本| 色爱区综合激情五月综合色| 三级韩国一区久久二区综合| 久久综合AV免费观看| 亚洲欧洲av综合色无码| 伊人久久五月丁香综合中文亚洲| 久久一区二区精品综合| 中文字幕亚洲综合久久2| 青青草原综合久久| 色噜噜狠狠色综合网| 亚洲五月激情综合图片区| 99久久国产综合精品2020| 亚洲综合精品一二三区在线| 亚洲国产综合在线| 亚洲精品第一综合99久久| 狠狠综合久久久久综合小说网| 热久久综合这里只有精品电影| 天天综合天天看夜夜添狠狠玩|